- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Demoulin, Henri Maxime (4)
-
Loo, Boon Thau (4)
-
Pedisich, Isaac (4)
-
Phan, Linh Thi (4)
-
Liu, Vincent (2)
-
Vasilakis, Nikos (2)
-
Zhang, Irene (2)
-
Fried, Joshua (1)
-
Kogias, Marios (1)
-
Smith, Jonathan M. (1)
-
Sonchack, John (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Demoulin, Henri Maxime; Pedisich, Isaac; Phan, Linh Thi; Loo, Boon Thau (, Proceedings of the Afternoon Workshop on Self-Driving Networks)
-
Demoulin, Henri Maxime; Pedisich, Isaac; Vasilakis, Nikos; Liu, Vincent; Loo, Boon Thau; Phan, Linh Thi (, Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference)Denial of service (DoS) attacks increasingly exploit algorithmic, semantic, or implementation characteristics dormant in victim applications, often with minimal attacker resources. Practical and efficient detection of these asymmetric DoS attacks requires us to (i) catch offending requests in-flight, before they consume a critical amount of resources, (ii) remain agnostic to the application internals, such as the programming language or runtime system, and (iii) introduce low overhead in terms of both performance and programmer effort. This paper introduces FINELAME, a language-independent framework for detecting asymmetric DoS attacks. FINELAME leverages operating system visibility across the entire software stack to instrument key resource allocation and negotiation points. It leverages recent advances in the Linux extended Berkeley Packet Filter virtual machine to attach application-level interposition probes to key request processing functions, and lightweight resource monitors--user/kernel-level probes--to key resource allocation functions. The data collected is used to train a model of resource utilization that occurs throughout the lifetime of individual requests. The model parameters are then shared with the resource monitors, which use them to catch offending requests in-flight, inline with resource allocation. We demonstrate that FINELAME can be integrated with legacy applications with minimal effort, and that it is able to detect resource abuse attacks much earlier than their intended completion time while posing low performance overheads.more » « less
-
Demoulin, Henri Maxime; Vasilakis, Nikos; Sonchack, John; Pedisich, Isaac; Liu, Vincent; Loo, Boon Thau; Phan, Linh Thi; Smith, Jonathan M.; Zhang, Irene (, Proceedings of the 3rd Asia-Pacific Workshop on Networking 2019)We revisit the gap between what distributed systems need from the transport layer and what protocols in wide deployment provide. Such a gap complicates the implementation of distributed systems and impacts their performance. We introduce Tunable Multicast Communication (TMC), an abstraction that allows developers to easily specialize communication channels in distributed systems. TMC is presented as a deployable and extensible user-space library that exposes high-level tunable guarantees. TMC has the potential of improving the performance of distributed applications with minimal-to-zero development and deployment effort.more » « less
An official website of the United States government
